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Abstract – An increasing need for reduced uncertainty has forced
metrologists to look for novel ways to improve the calibration
standards for flow. The NIST Fluid Flow Group is experimenting
with the use of an advanced ultrasonic flow meter (AUFM) to
improve flow measurement and to detect the dynamic properties of
calibration facilities. Ultrasonic technology is evolving rapidly and
technical advances have significantly improved flow measurement
in continuous industrial processes. The AUFM couples multi-path
ultrasonic sensing capabilities with pattern recognition software to
predict likely flow fields and their probability of existence. The
knowledge encoded in the AUFM is derived from training exer-
cises that use computational fluid dynamics and experimental
results to teach a flow field recognizer (FFR) via a learning algo-
rithm. A four-path ultrasonic flowmeter prototype has been used to
demonstrate the AUFM operational principle. Results showed that
the four-path meter can successfully identify flow patterns among
several selected flow fields. The results also indicated that the
ability of the FFR to identify flow patterns increases as the accu-
racy of the sensor increases, while it decreases as the number of
flow patterns considered increases. In addition to being used as a
flow diagnostic tool, the AUFM could prove beneficial in field
applications where installation effects can lead to gross errors
when ultrasonic signals are evaluated using conventional integra-
tion techniques.

Keywords – Ultrasonic Flowmeter, Artificial Intelligence, Flow
Measurement.

I. INTRODUCTION

 The National Institute of Standards and Technology (NIST)
has been searching for novel ways to reduce the uncertainty
and improve the operation capability of its flow calibration
facilities [1]. The operation of a good flow calibration facility
requires not only an accurate determination of the average
flow rate, but should also be able to maintain and characterize
important flow field properties, such as the flow steadiness
and real time flow profiles.

 Accurate flow measurement is a challenging task, especially
in industrial applications. In the last decade, ultrasonic tech-
niques have significantly improved flow measurement and its
use for measurements in continuous industrial processes has
been gaining acceptance [2]. The ultrasonic technique for
measuring flow offers many potential advantages over tradi-
tional measurements. The instrumentation can be robust, and
non-invasive. However, as with most flow meters, the accu-
racy of the flow rate determination in non-ideal pipe configu-
rations depends on the meter design and sensing technology.
Typically, ultrasonic flow meter manufacturers assumed axi-

symmetric 1-D ideal velocity profiles to design their trans-
ducer arrangements. However, these assumed profiles seldom
occur in real applications, leading to significant errors [3, 4].

 Metrologists have relied on the assumption that the flow
fields produced by their calibration facilities are ideal pipe
flows. An “ideal installation” is one where the pipe flow dis-
plays an equilibrated velocity distribution similar to that natu-
rally produced by long straight lengths of constant diameter
pipe. Such fully-developed velocity profiles (i.e., the profile
is streamwise invariant) can be closely approximated by de-
vices known as flow conditioners which help reduce the
length of straight pipe required for an ideal installation. Typi-
cal "non-ideal" pipe flows can be found downstream from
elbows or reducers. Research has shown that deviations from
the ideal assumption can lead to significant errors in the me-
ter calibration, even when the calibration system may provide
a good average flow rate determination. Although various
techniques exist for evaluating the flow profile in a calibra-
tion facility, their high cost only allows for their sporadic use,
thus providing data that represents the conditions at the time
of the evaluation, not at the time of the meter test.

 The objective of this study is to improve the accuracy and
extend the capability of ultrasonic flow meters. This work
focuses on flow measurement performance prospects using a
special neural network approach. The project is intended to
provide a comprehensive understanding of the operational
principle of pattern recognition as applied to flow field de-
tection and to serve as a foundation to advance the develop-
ment of intelligent ultrasonic flow meters. Although the pur-
pose of this research is to diagnose the flow field and to re-
duce the uncertainty of flow calibration facilities, the use of
an advanced ultrasonic flow meter (AUFM) could prove
beneficial in field applications where installation effects can
lead to gross errors when ultrasonic signals are evaluated
using conventional integration techniques.

II. PRELIMINARIES

 A. Basic Ultrasonic Flow meter

 A detailed description of ultrasonic metering can be found in
[5]. Two common methods used in the design of ultrasonic
flow meters are travel-time and Doppler techniques. Fig. 1
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sketches an ultrasonic flow meter based on a dual-sensor,
travel-time technique, which is the fundamental element of
the more complicated multi-path flow meter.
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 Figure 1. Schematic diagram of a dual-sensor (single cordal path) ultrasonic
flow meter.

 Travel-time ultrasonic flow meters measure the difference
between the two opposite pulse propagation times along an
ultrasonic path defined by the dual sensors. The configuration
parameters for dual-sensor ultrasonic flowmeters are the path
offset, b, the path azimuthal angle, α , and the path axial
angle, φ . The basic equations for calculating propagation
times in the ultrasonic flowmeter can be written as:
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 where V is the fluid velocity, C  is speed of sound, e is a unit
vector of sound path, s is path length, and Vs is the averaged
fluid velocity along the sound path. Thus, from the above
equations, we have the indicated velocity and speed of sound
in the fluid, respectively.
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 The meter response depends on the integration line of the
acoustic propagation path. In general, the acoustic
propagation path is not strictly a straight-line [6]. The effects
of curved ray paths on meter performance have been
investigated and reported elsewhere [7]. These effects
diminish as the Mach number of the flow becomes small
(e.g., < 0.1). Because this technique determines not only the
average fluid velocity but also the sound speed, the method
can also be used to measure other fluid properties (such as
temperature, etc.) provided that a relationship between the
desired property and the speed of sound is known.

 B. Traditional Ultrasonic Flowmeter

 As shown in (1), the numerical simulation of an ultrasonic
flow meter requires a complete description of the 3-D flow

field, V, in a pipe. Velocity fields erected from mathematical
models (composed of various velocity elements) and
Computational Fluid Dynamics (CFD) have been used to
simulate flow meter response [7]. Using these simulated
flows, various arrangements of travel-time ultrasonic sensors
were tested to better understand how meter output depends on
the sensor geometry and on the signal interpreting software.
Fig. 2 shows a CFD simulation of an indicated velocity field
for a dual-sensor flow meter with °= 45φ  placed at various
cordal locations, b, and orientations, α . The simulation data
was obtained using CFD results five diameters downstream
from a single elbow for Reynolds number of 6103Re ×=
(the averaged bulk velocity normalizes the velocity). These
results indicate that the dual-sensor meter response strongly
depends on the meter installation orientation and location.
Furthermore, these results show that large profile dependent
errors could exist.  The indicated velocity is ranging from 0.8
to 1.08 of the average velocity depending on sensor
geometry.

 Figure 2. Simulation of a dual-sensor (single cordal path) flow meter, 5 di-
ameters downstream from a single elbow for 6103Re ×=  and °= 45φ  at
various cordal locations, b, and orientations, α .

 There are two fundamental issues of dual-sensor ultrasonic
flow meters. The first is the error due to the cross flow
components. The effective velocity seen by the flow meter is
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 where xV , yV , and zV  are the velocity components, and xe ,

ye , and ze  are the direction cosines of the sound path, in X ,
Y , and Z  directions respectively. When the volumetric flow
rate is the main result of interest, the desired meter response
is the axial velocity, zV . However, the indicated velocity
contains extra terms from the cross components, which con-
tribute to the meter error. The effects of these cross compo-
nents increase as φ  increases or as ze decreases. On the other
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hand, these installation effects can be used to measure the
cross flow and swirl components in the flow, or to diagnose
the flow field of a flow facility. The second issue of the dual-
sensor ultrasonic flow meter is the interpretation of the area-
averaged velocity from the measured line integral velocity

IV . To do the interpretation, a pipe flow profile needs to be
assumed and thus the accuracy of the meter will depend on
the assumed profile. Thus, installation, location, and orienta-
tion are critical to obtaining satisfactory levels of meter per-
formance, and special caution is needed when ultrasonic flow
meters are used to measure velocity in the presence of cross
flows.

 To improve the accuracy and reduce the sensitivity of the
installation effects, flow meters with multiple ultrasonic paths
have been used. The estimated averaged velocity of a multi-
path ultrasonic flowmeter can be expressed as,

 i
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 where p  is the total number of ultrasonic paths, iV  is the
measured mean velocity along the i-th path, and iw  is the
integration weight factors associated with the i-th path. The
selection of the weight factors and the placement of the ultra-
sonic paths have previously been done based on Gaussian
Quadrature techniques that assume a ideal velocity profile
inside the meter [8]. The simulation results for four typical
techniques are shown in Fig. 3. These four techniques are
denoted as Gauss-Legendre (Leg), Gauss-Jacobi (Jac), Gauss-
Chebyshev (Chev) and “tailored” Pann.

 Figure 3. Simulation of a four cordal path flow meter, 5 diameters down-
stream of a single elbow for 6103Re ×=  and °= 45φ  for different Gaus-
sian quadrature techniques.

 As expected, more sensors lead to more information and thus
the results show that multi-path flowmeters do improve the
metering accuracy and profile insensitivity when compared to
the single path arrangement in Fig. 2. The variation of indi-
cated velocity with meter orientation, α ,  has been improved

from 0.28 to about 0.04. However, in all cases, the indicated
velocity is always lower than the average velocity of 1.0, and
no installation angle can be found to yield the correct aver-
aged velocity. Again, this is because the design of the trans-
ducer arrangements and the signal processing algorithms for
ultrasonic flow meters have generally been based on an as-
sumed profile and in fact, such profiles seldom occur in field
applications. In addition, meter installation effects often lead
to skewness and circulation velocity components that were
not assumed when the meter was designed. To realize the
potentials of ultrasonic technology in flow measurement and
standardization, a new approach is used in this study.

 III. RESULTS

 A good flow calibration system requires not only the delivery
of the quoted uncertainty but also the ability to access the
distribution of the flow velocity profile entering the meter-
under-test. The knowledge of an incoming velocity profile is
a critical component affecting the performance of most flow
meters. Traditional flow meters aim to achieve accuracy in
average flow rates and rarely provide detailed flow field de-
scriptions for a calibration facility. To attain such a level of
detailed flow information, more complex sensing arrange-
ments, or other novel methods for detecting varying flow
fields, need to be considered.

 One way to describe detailed flow fields is acoustic imaging
or tomography. This is a sensing methodology where the re-
sponse of a large array of ultrasonic sensors is used to recon-
struct the 3-D velocity profile present in the flow meter. In
theory, acoustic tomography provides an attractive procedure
for sensing a complex time-dependent flow field given the
non-intrusive nature of its detection and the completeness of
its results. However, there are still many practical problems
to the implementation of such sensing systems. The limited
resolution of ultrasonic travel-time and ray spacing are two
such problems. Unlike the scalar problem, the signal for
acoustic tomography depends not only on the magnitude but
also on the relative orientation of the rays to the vector field.
Thus, measuring time difference over a continuum of angles
on a plane does not yield sufficient data to recover the un-
known vector. At present, this approach can lead to non-
unique results and poor time resolution; thus a more practical
solution is necessary.

 An Advanced Ultrasonic Flow Meter

 We propose a pseudo-tomographic deconvolution technique
for the development of an intelligent ultrasonic flow meter
capable of evaluating the flow velocity profile in real time.
This meter would make use of a customized ultrasonic multi-
path array to acquire accurate flow measurements and pro-
vide details of the flow profile in the pipe.

 As discussed before, one adverse result of traditional multi-
path ultrasonic flow meters is that deviations from the as-
sumed profile may lead to errors in the estimation of the
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volumetric flow due to the inadequacy of the postulated
weighting factors, iw  (see equation 4). One way to overcome
this problem is by applying flow profile correction factors,

iC , to each acoustic path based on the encountered velocity
profile. Making such corrections, (4) becomes,
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 Unfortunately, the selection of the iC 's is unique for each
velocity profile, which is typically unknown, and this leads to
a problem of immense proportions – especially if treated ex-
perimentally. On the other hand, if the velocity profile at the
meter is known, it is theoretically possible to predict such
correction factors. Following this approach, the main task is
to estimate or determine the type of the velocity profile to
which the flow meter is exposed.

 The pseudo-tomographic deconvolution technique proposed
above could be implemented using pattern recognition algo-
rithms. One could make use of a modified back-propagation
method to create the electronic brain for the AUFM. Figure 4
schematic shows a diagram of an AUFM, which consists of
conventional multi-path ultrasonic flow meter hardware
(UFM) plus flow field recognizer software (FFR). The FFR is
based on a partitional pattern classifier program that was de-
veloped originally for speech recognition applications [9].
The internal workings of the FFR require three main opera-
tions: (a) selecting training and testing data relevant to the
classification process, (b) formulating a memory matrix, and
(c) applying the memory matrix to new data for real-time
classification.

 As with most other pattern classification algorithms, the FFR
association matrix is established through a training process.
The training process consists of inputting a series of feature-
vectors (i.e., the responses of the sensing array) along with
each vector’s corresponding response category (i.e., the de-
sired sensing system output). The pattern recognition algo-
rithm will map a vector of real-valued variables (e.g., ultra-
sonic multi-path velocities) into a finite set of arbitrary cate-
gories or classes (e.g., patterns or types of velocity profiles).
The input vector represents the patterns and features that need
to be classified or recognized by the algorithm. Training and
testing is required to find a set of parameters that yield the
highest level of recognition performance and the minimum
level of uncertainty. Based on the trained memory, the recog-
nizer would be able to take the input as a previously unknown
vector and produce as output a list of "candidate" categories,
each with an assigned probability of the likelihood that the
selected class represents the unknown input vector.

 Once the flow field patterns are estimated, the information on
the class probability will be used to quantify the velocity pro-
file enabling the AUFM to make adjustments in order to pro-
vide accurate meter readings. The application process is very

fast, lending itself for the classification of ultrasonic signals
in real time. Using this approach, the final corrected meter
output for the volumetric flow rate can be estimated as:
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 where N is the number of flow classes or categories selected,
JP is the probability that the meter output vector iV  belong to

the j-th class (category), and the JiC  is the correction con-
stant for the i-th sensor for the j-th class flow. The correction
constants, JiC , are determined when the finite number of
flow patterns to be considered is selected. Therefore, the set
of meter constants found by this technique is a function of the
unknown flow field in contrast with the prescribed set of
meter correction factors used by the traditional meters.

 Figure 4. A schematic diagram of an advanced ultrasonic flow meter. Fn
denotes the selected flow patterns. For each n, there is a set of velocity Vi
and the class parameters.

 The pattern recognition approach yields many advantages
over tomographic deconvolution mathematics. First, the time
required for flow field classification is less than that required
for deconvolution of tomographic data because no matrix
inversion is required. Second, pattern recognition methods
are designed to establish robust associations between sensor
data and response classes which makes them less sensitive to
noise that could otherwise hinder tomographic deconvolution.
Third, the use of pattern recognition methods requires no
physical knowledge of the process being classified – only
cause-effect relations need to be known. Using the FFR, the
AUFM could be an improvement over current flow meter
technology because it is able to recall past flow information,
much like any person is able to use previous experience for
future reference. Meanwhile, traditional meters are based
only on the knowledge available at the time of their design.
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 B. Test Result

 The key to the success of the classification process resides in
the ability of the selected sensor arrangement to provide a
feature-vector with enough information to perform the classi-
fication. For example, suppose that the AUFM had only one
ultrasonic sensor pair. Then, it would be difficult for the FFR
to yield the correct selection of the flow category, even in
symmetric flows, given that the sensing arrangement cannot
provide enough information to discern differences between
the various profile categories. However, if the AUFM had a
multitude of cordal paths –in relevant locations– the FFR
may be capable of discerning the differences between the
velocity profiles and providing the correct meter constants for
each case of interest.

 Our current AUFM is based on a Daniel Senior Sonic gas
flow meter [10]. It is 20-cm (8") in diameter and has 4-paths
arranged in a x-pattern per Gauss-Jacobi quadrature specifi-
cations. Prior to training, the data read by the FFR program
was organized in lines containing the feature-vector (i.e., the

iV ’s) followed by the vector’s corresponding response cate-
gory (e.g., fully developed flow, elbow flow, reducer flow,
etc.) and other related parameters (e.g., calibration constants,

JiC ). In our approach, the output of a conventional multi-
path flow meter consists of an array of path-averaged cordal
velocities (i.e., indicated velocities), iV ’s, which were pro-
vided to the flow field recognizer. The flow field recognizer
made use of machine-learned concepts to determine the asso-
ciation between the iV ’s and the selected flow classes.

 Both simulation and experimental data were used to evaluate
the performance the AUFM. The simulation data was gener-
ated using both mathematical and CFD models [7] coupled
with a model of the ultrasonic sensor response expected from
the selected four-path meter configuration. Experiments were
conducted in an open-ended gas flow facility. The facility
consisted of a blower located at the downstream end of the
20-cm (8") diameter pipe, which pulled flow though the four-
path UFM. The UFM was installed about 30 diameters up-
stream from the blower.

 Table 1 lists the flow categories selected for three groups
used in testing the performance of the four-path AUFM.
Group-I, which consist of 14 flow classes, is based on the
meter simulation using mathematical models, which are com-
posed from various velocity elements [7]. Group-II consists
of 12 flow classes from the combination of CFD and mathe-
matical models. Group-III consists of 11 experimentally ac-
quired flow classes.

 In the group-I column, Uniform represents pure 1-D plug
flow; Laminar represents classic parabolic, axial velocity
profile; BM is a typical fully developed profile given by
Bogue and Metzner [11]; PL25 is a power law profile with
the exponent of 1/25; fr2 is a velocity field having a slow
center core profile; SL is a simulation of a typical single el-

bow flow, which is a combination of a power law profile, a
set of double vortex eddies, and a skew axial velocity flow;
and DL is a simulation of a double elbows out-of-plane flow,
which results from the combination of a power law profile, a
"fr2" slow center core profile, and a single vortex eddy. The
classic Taylor vortex model [12] was used to simulate the
typical cross or swirl flows commonly found in the elbow
flows. In group-II, Lxy denotes the CFD result for double
elbows out of plane; and Ly for a single elbow. In the table, z
denotes the axial distance downstream of a pipe element (el-
bow or reducer). In group-III, different types of mechanical
blockages were mounted on the piping entrance four diame-
ters upstream of the UFM to create various flow fields. Their
names are meant to be self-explanatory.

 Table 1. Flow categories selected for three test groups.

 Class  I. Math, N=14  II. CFD , N=12  III. Experimental, N=11
 0  Uniform  Uniform  Straight pipe
 1  Laminar  BM  Single elbow at 0o

 2  BM  Reducer, z=6, 0o   at 90o

 3  PL25   z=50, 0o   at 270o

 4  Fr2  Lxy, z=6, 0o  Half of pipe at 0o

 5  SL, 0o   z=56, 0o   at 90o

 6   45o.  Ly, z=5, 0o   at 180o

 7   90o.   z=5 , 90o   at 270o

 8   135o.   z=5, 180o  1/4 of pipe at 90o

 9   180o   z=5, 270o   at 270o

 10   225o   z=55, 90o  plate blocks center pipe
 11   270o .   z=55, 270o  ----
 12   315o  ----  ----
 13   DL  ---  ----

 

 To simulate the AUFM time series output, a set of random
numbers was created for each selected flow case, based on
the ultrasonic response expected from the four-path sensing
configuration. A normal distribution function was used for
the random number generator. The uncertainty in the recog-
nition process depended on: (a) the ability of the UFM sensor
array to measure the quantity of interest (i.e., features se-
lected for recognition), (b) the uniqueness of the input-output
transformation (i.e., separability of the classification process),
and (c) the number and relevance of the training exercises
provided to the flow field recognizer.

 Figure 5 shows the sample data of the experimental results
for the group-III case. The data on the left are the pattern data
used to train the FFR. The data is shown as an ensemble of
the iV ’s obtained from each sensing path in the UFM for
each of the 11 unique classes – each path depicted in a differ-
ent symbol. A sample test data input vector is shown on the
right.  Making a visual inspection, it is apparent that the sam-
ple set belongs to class-7 flow field. During the test, the FRR
predicted class-7 with a probability of 1.0.

 To test the effects of the sensor uncertainty and the ability of
the AUFM to differentiate the flow patterns, different values
of standard deviations were used in generating the random



numbers. For a standard deviation of 1% of the velocity vec-
tor (not uncommon in real applications), the probability that
the FFR makes a correct classification of a test flow pattern is
about 95% for the groups I and II sets. The correct probability
decreases as the standard deviation of the data is increased.
Results showed that the correct probability, and the ability to
find a correct flow pattern, decreases as the number of the
flow patterns available increases. The effects of velocity un-
certainty in the sensors are also noticed in the experimental
test on group-III. The number of flow classes and quality of
the training data constrain the ability of the FFR. In order to
have good classification results for the selected flow patterns,
we must reduce the uncertainty of the velocity sensor data.
Averaging the raw data taken directly from the UFM over
longer periods of time helps.  In this work, a 60-second time
average was selected for the velocity average. During this
investigation, problems with the large velocity variations
were due to the large time variations introduced by the poorly
controlled test facility. A more stable flow facility might be
able reduce most of the meter uncertainty issues.

 Figure 5. Sample data of a tested FFR for group-III.

 With the ultrasonic 4-path array, we were able to teach the
AUFM how to differentiate between 14 different flow profile
classes with a success rate of 95% or better. Some profiles are
indistinguishable, and thus, the FFR failed. However, if there
were some separable feature in the velocity sensor vector, the
FFR would repeatedly select the correct candidate. In the case
where the desired output from the AUFM would be a quad-
rant-based description of the flow field, the ultrasonic sensor
arrangement would need to be more complex (e.g., 8 to 12
sensor pairs may be required). For such an application, the
feature-vector would be enlarged in proportion to the increase
in sensor pairs. The response category would need to become
more complex to accommodate the detailed description re-
quired.

IV. SUMMARY

A design for an advanced ultrasonic flow meter has been dis-
cussed. The main feature of the AUFM is its use of a flow
field recognizer to make detailed determinations of the flow

field properties taking advantage of pattern recognition tech-
nology. A training process for the flow field recognizer was
discussed and its application for the determination of volu-
metric flow rate has been provided. This paper shows how
a priori knowledge of the meter sensor array could be used in
an FFR to optimize the capability of the AUFM. These re-
sults helped in the development of an "intelligent" flow sen-
sor capable of detecting adverse installation effects in order
to make adjustments and provide accurate flow rate meas-
urements.
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